GCE Examinations

Further Pure Mathematics Module FP2

Advanced Subsidiary / Advanced Level
Paper A
Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and / or calculus.
Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 8 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. A curve has the equation

$$
y=x+2 x^{2}+5 x^{3} .
$$

Show that the radius of curvature of the curve at the origin is $\frac{1}{\sqrt{2}}$.
2. Show that

$$
\begin{equation*}
\int_{0}^{\ln 2} x \operatorname{sech}^{2} x \mathrm{~d} x=\frac{3}{5} \ln 2-\ln \left(\frac{5}{4}\right) . \tag{8marks}
\end{equation*}
$$

3. (a) Prove that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}(\arcsin 2 x)=\frac{2}{\sqrt{1-4 x^{2}}} . \tag{3marks}
\end{equation*}
$$

Given that

$$
\mathrm{f}(x)=2 x \arcsin 2 x+\sqrt{1-4 x^{2}}
$$

(b) show that

$$
\begin{equation*}
\mathrm{f}^{\prime \prime}(x)\left[\mathrm{f}(x)-x \mathrm{f}^{\prime}(x)\right]=4 \tag{6marks}
\end{equation*}
$$

4.

Fig. 1
The parametric coordinates of the curve C shown in Figure 1 are

$$
x=t^{2}, \quad y=t-\frac{1}{3} t^{3}, \quad 0 \leq t \leq a .
$$

The curve C meets the x-axis at the point A where $t=a$.
(a) Find the value of a.

The curve C is rotated through 2π about $O x$.
(b) Find the surface area of the solid generated.
5. (a) Using the definitions of $\cosh x$ and $\sinh x$ in terms of e^{x} and e^{-x}, prove that

$$
\cosh 2 x=2 \cosh ^{2} x-1 .
$$

(b) Solve the equation

$$
2 \cosh 2 x=13 \cosh x-12,
$$

giving your answers in terms of natural logarithms.
6.

$$
x^{2}-10 x+41 \equiv(x+a)^{2}+b .
$$

(a) Find the values of the constants a and b.
(b) Show that

$$
\int_{5}^{9} \frac{x}{\sqrt{x^{2}-10 x+41}} \mathrm{~d} x=p(\sqrt{2}-1)+q \ln r,
$$

stating your values of p, q and r.
7. $\quad I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \cos x \mathrm{~d} x, \quad n \geq 0$.
(a) Prove that

$$
\begin{equation*}
I_{n}=\left(\frac{\pi}{2}\right)^{n}-n(n-1) I_{n-2} \quad n \geq 2 . \tag{5marks}
\end{equation*}
$$

(b) Hence find the value of I_{4}, giving your answer in terms of π.
(6 marks)
8. The rectangular hyperbola C has equation $x y=c^{2}$, where c is a positive constant.
(a) Show that an equation of the tangent to C at the point $P\left(c p, \frac{c}{p}\right)$ is

$$
\begin{equation*}
x+y p^{2}=2 c p . \tag{4marks}
\end{equation*}
$$

The tangent to C at P meets the x-axis at the point X.
The point Q on C has coordinates $\left(c q, \frac{c}{q}\right), q \neq p$ such that $Q X$ is parallel to the y-axis.
(b) Show that $q=2 p$.
M is the mid-point of $P Q$.
(c) Find, in Cartesian form, an equation of the locus of M as p varies.

END

